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We present a language for representing context-
sensitive temnporal probabilistic kntowvledge. (Con-
text constraints allow inference to be focused on
only the relevant portions of the probabilistic
kntowledge. We provide a declarative semllantics
for ouir language and an implemnented algorithmr
(BNG) that generates Bayesian ntetworks to com-
pute the posterior probabilitie.s of queries. We il-
lustrate the use of the BNG systemi by applying it
to the problemi of mtodeling the effects of imledzca-
tions and other interventions on the condition of
a patinctt in cardiac arrest.

INTRODUCTION
For accurate medical diagnosis and prediction, it
is often necessary to model a l)atient's condition
over time. Because there is great uncertainty in
clinical medicine, a system for (liagnostic or prog-
nostic evaluation must be able to rel)resent and
reason with uncertainty. Bayesian networks are
cuirrenitly the most )owerful andl l)olular method
for representing and reasoninlg with l)robabilistic
information. A Bayesian network is a (lirecte(l
acyclic graph in which the nodes represent ran-
(lor01 variables and the links represent (lirect in-
fluienices. The influences are quaintified with con-
ditional probabilities in the form of link mnatrices
associated with each node. A link iiiatrix specifies
the probabilities of all possible values of a node
giveIn all possible combiiations of valuies of its par-
ents. Researchers have recently al)l)lied Bayesian
networks to the imodeling of teirporal processes
[1, 2]. This is typically done by representing time
discretely andl creating an instance of each time-
varying random variable for eac.h poiIt in tirne.

Althouglh Bayesian inetworks provide a rela-
tively efficient mnethodl for representing andl rea-
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soninlg with l)rol)albilistic iiiforiiiationl, the process
of colliiptinlg posterior lprobabilities (inferenice) in
Bayesiain inetworks remnains NP-lhardl [3]. This
coiiiplexity becornes partic.ularly )roblernlatic in
laIge imiodlels such as those that arise in model-
ing teimiporal l)rocesses. We c.an greatly reduice
the size of the network mnodels if we can icdentify
som--ie (leterni-1iiistic inform-l-atioIn an(Id uise it as con-
text to in(lex the probabilistic iniforimiationi. For
examI1ple, in using Bayesian networks to dletermine
the likely outcoii-ies of a plan, actions are typically
rel)resentedl as nodles in the network [4, ch7], [5].
This ofteIn results in networks with large nurribers
of nodles and large link mnatrices. The reason is
that we needl two types of knowledlge for each (lo-
miiain variable: a s)ecification of how it is infliu-
encedl by each action (causal rules), andl a specifi-
cation of how it behaves over time. in the absence
of actions that influence it (persistence rules). But
since when evaluating a l)lan, the l)erformnance of
on1e s own actions is dleterministic knowledlge we
know whether or not we plan to attemipt an action

actions can be usecI as c.ontext iiformatioin.
We l)rol)ose representing a class of Bayesian net-

works with a knowledlge base of l)rol)al)ilistic rules
aignlienited with context conistraiints. A c.ontext
constraint is a logic-al exl)ression that determinies
the applicability of a lprobal)ilistic relatioin based
oIn son-ice deterriinistic knowledlge. G(iven a (luery,
a set of c.ontext information, andl a set of evidlence,
we generate a terril)oral Bayesian network to coi-i-i
pute the p)robability of the qutery given the evi-

deic.e withinl the given context. Both conitext in-
formation ancd inclependencies encodle(d in the net-
work toplology are used to avoid genieratioin of
nodes irrelevanit to the con-i-iptitatioin.

CARDIAC ARREST
We illustrate the cal)abilities of context-sensitive
teml)oral probability rnodel construiction by mod-
eling the effects of medlications andi other interven-
tions on the condition of a l)atient in carcliac ar-
rest. The goal of treatmrent is to miaintain life andi
p)revent anoxic injuttry to the brain. Fewer than
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10% of cardiopulmonary resuscitation attempts
result in survival without brain damage [6].
The observable variable is the electrocardio-

gram (ECG() or rhythm strip. While not includ-
ing all possible rhythms, we considler the range of
rhythms most commonly presented: normal sinus
rhythm, ventricular fibrillation, ventricular tachy-
cardia, atrial fibrillation, supraventricuilar tachy-
cardia, bradycardia, andi asystole.

While patient survival is of primary importance,
cerebral damage must be taken into account and
can be viewed as part of the cost in a resuscitation
attempt. The length of time a patient has been
without cerebral blood flow determines the period
of anoxia. If the patient has ineffective circulation
for more than five minutes, there is a likelihood of
sustaining cerebral damage. This damage is per-
sistent and its severity increases as the l)eriod of
anoxia increases.

Medical personnel treat a patient experiencing
a cardiac arrest with a variety of interventions and
medications. We consider the two most common
medical interventions: cardiopulmonary resuscita-
tion (CPR) and defibrillation (DFIB). A number
of medications help control the heart rhythm and
rate, improve cardiac output and increase blood
pressure. Many effective drugs are currently avail-
able, of which we chose to model the three most
commonly used. Lidocaine is an anti-arrhythmic
druig that helps restore a regular rhythm; it is usu-
ally used for ventricular tachycardia, ventricular
fibrillation, or to prevent ventricuilar fibrillation.
Atropine increases the heart rate during brady-
cardia or asystole. Epinephrine overcomes heart
block and helps restore cardiac function. We have
simplified our model by assuming a standard bolus
size and administration rate.

THE BNG SYSTEM
The Bayesian Network Generation system (BNG)
takes as input a knowledge base (KB), a set of
evidence atoms (E), a set of context atoms (C),
and a query atom (Q) and creates a network to
compute the probability of Q given E in the con-
text C. BN(G1 reasons with two disjoint sets of
predicates: probabilistic predicates (p-predicates)
and context predicates (c-predicates). Atoms
formed from p-predicates (p-atoms) represent ran-
dom variables. Atoms formed from c-predicates
(c-atoms) represent deterministic knowledge. We
apply completed logic program semantics to the
set of c-atoms, designated completed(C), and con-
sider only the logical consequences in the Her-
brand universe. This gives us the well-known
property of negation-as-failure, by which failure
to show the truth of an atom is taken to indicate
its falsity. Negation-as-failure allows uis to avoid
having to explicitly specify the lack of occurrence

of certain actions andl events. With this semian-
tics, completed(C) entails the truth or falsity of
each c-atom in the Herbrand universe. Further,
we assume that completed((') holds with proba-
bility one, so that each c-atom in the Herbrand
universe has either probability one or zero.
A rule in a BNG knowledge base has the general

form:
(Context: (U', (,'mrn
Ante: A1, An
C'onse: Ao
Matrix: (condcitional probabilities)

where the Ai are p-atoms and the (C' are c-atomi
literals, both of which may contain variables that
are implicitly universally quantified. Such a rule
represents a set of universally quiantified condi-
tional probability sentences of the form

VX P(Ao A1, ...IAn1 (II, ...,('m)

,Such sentences can be given a well-definedl semnan-
tics in Halpern's [7] probability logic C2.
We interpret compuitation of Q given E in con-

text C, as computing P(Q E, C(). But notice that
since each c-atom has either probability one or
zero, we can condition the sentences in KB oIn
C by simply eliminating those rules for which one
of the C i has probability zero and by eliminating
the conditions from those for which all C,i have
probability one. Call this the C-selected KB. Just
as the link matrices in a Bayesian network do not
completely specify a probability distriblution over
the random variables represented by the nodes,
the probabilities in the rule matrices do not corn-
pletely specify a probability distrilbutioni over the
random variables represented by ground instances
of the 1)-atoms. In a Bayesian network, the dis-
tribution is completed by assuming probabilistic
independence associated with the property of the
network topology called d-separation. In previous
work [8] we have shown that such an independence
assumption can be applied to a knowledge base as
well. Now if the rules in the (,-selected kIB con-
form to some syntactic constraints then it has been
proven that they represent a class of Bayesian net-
works formedl by taking sets of groundl instances
of the rules [8]. We can comppute P(QIE,(-C) by
using the rules in the (8-selected KB to generate
a network to compute P(QIE) and then evaluat-
ing the Bayesian network. We have used the for-
mal knowledge base semantics to prove that this
two-step process is a souind and complete inference
procedure for queries on the KB [9].

Given a ground atomic query Q, a set of ground
evidence atoms E, and a set of ground context
atoms C', BNG generates a network to compute
P(QIE, completed(C')) such that the probability
computed with the network is equal to that defined
by the knowledge base semantics. The key idea
behind the algorithm is that since the rules in the
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Figure 1: Traversal chart for identifying active
paths.
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knowledge base are structurally similar to Horn-
clauses, we can use backward-chaining to search
through the rules for paths between the query and
related random variables. The generated network
is just the resulting search tree. The algorithm
has been implemented 1 in CommonLisp with an

interface to the IDEAL [10] inference system.
The algorithm proceeds by first generating the

network and then pruning d-separated nodes. By
simply backward chaining on the query and on

the evidence atoms the generation phase generates
all relevant nodes and avoids generating barren
nodes, which are nodes below the query that have
no evidence nodes below them. Such nodes are ir-

relevant to the computation of P(QIE) [11]. Dur-
ing network generation we keep track of whether
a node is a predecessor of an evidence node. Such
nodes are called epsilon nodes. This information
will be used by the pruning algorithm in determin-
ing d-separation.
The pruning phase involves traversing the gen-

erated network using a modified depth-first search
originating at the query. Only those nodes reach-
able via an active path from the query are visited
and marked as reachable. Upon termination of the
search, only reachable nodes are retained.
As we approach each node within the search,

we examine the direction of the incident edge into
that node, whether the node is marked as an ep-

silon node, and whether the node is an evidence
node. From this information we can determine
the allowed directions of outgoing edges from that
node. The relations between incoming edge (link
from a parent), outgoing edge (link to a child), and
the type of node are shown in figure 1. An incom-
ing edge is represented by a + and an outgoing
edge is represented by a -. For example, the first
entry says that if a node is an evidence node and a

path enters the node along an incoming edge then
it can exit the node only along another incoming
edge.

MODELING THE DOMAIN
We represent the cardiac-arrest domain with p-

predicates for rhythm, period of anoxia, cerebral
damage, and cerebral blood flow:

Rhythm(time, value)
value = {normal, v-fib, v-tach, a-fib, SVT,

1The code is available
http://www.cs.uwm.edu/faculty/haddawy.

at

Period of Anoxia

Cerebral Blood Flow

Cerebral Damage

Figure 2: Diagramatic representation of knowl-
edge base rules for the medical code domain.

brady, asystole}
POA(time, value)
value= {none, min, ..., 5min, sustained}

(JD(time, value)
value= {none, mild, moderate, severe}

CBF(time, value), value = {present, absent}

We represent the various possible medications
and interventions as c-predicates:

Intervention(time, value)
value={CPR, DFIB}

Medication(time, value)
value={EPI, LIDO, ATRO}

The knowledge base for the medical code do-
main contains rules for determining the probabil-
ities of the four p-predicates at any point in time.
The rules are diagramatically shown in Figure 2.
We have a set of rules that describe the ef-

fects of medications and interventions on the
heart rhythm by specifying the probability of the
rhythm at a time t given each possible combina-
tion of medication and intervention at time t - 1
and the rhythm at time t - 1. We also have a

rule specifying the probability of the rhythm at t
given only knowledge of the rhythm at t - 1. This
type of rule is called a persistence rule. The med-
ication administered and the intervention applied
are specified as context constraints on the rules.
The BN(GI rule specifying the effect of epinephrine
on Rhythm is shown below:

Context: Intervention(t-1, CPR),
Medication(t-1, EPI)

Ante: Rhythm(t-1)
Conse: Rhythm(t)
Matrix:

;NSR VF VT AF SVT B A
.03 .26 .10 .05 .55 .00 .01
.12 .60 .10 .00 .08 .00 .10

;normal (NSR)
;v-fib (VF)
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.01 .80 .14 .00 .00 .00 .05 ;v-tach (VT)

.01 .30 .05 .50 .05 .00 .09 ;a-fib (AF)

.01 .10 .09 .35 .30 .00 .05 ;SVT

.08 .15 .02 .05 .60 .05 .05 ;brady (B)

.10 .15 .05 .00 .05 .05 .60 ;asystole (A)

If actions were not represented as context con-
straints, the link matrix for Rhythm would con-
tain 588 entries. By representing actions as con-
text constraints, we obtain 12 rules each with a
link matrix of 49 entries. Although using context
constraints does not reduce the amount of proba-
bilistic information we must assess, it drastically
reduces the size of the link matrices in the gen-
erated networks, which is the main determining
factor in the inference complexity.
The rule for period of anoxia specifies the value

at time t given the previous value and the previous
value for cerebral blood flow. The rule for cere-
bral damage specifies the value of cerebral dam-
age given the previous value and the current value
for period of anoxia. Finally, the rule for cerebral
-blood flow specifies the value at a time as deter-
mined by the heart rhythm at that time.
One of the more difficult aspects of developing

a probabilistic model such as this one is securing
complete, valid knowledge. All domain knowledge
was elicited from an expert ER physician. We
started by eliciting the qualitative causal structure
of the domain. We then used Bahill's [12] tech-
niques for eliciting the needed conditional proba-
bility values.

RESULTS
The lprocedure used when perforrming a simula-
tion involves three steps. First, the evidence is
set to specify the condition of the patient at the
present time (time 0). The conditions specified are
cardiac rhythm, known period of anoxia and pre-
vious extent of cerebral damage. Second, the ac-
tions (medications and/or other interventions) are
specified for individual time segments.2 Third, the
(lueries are set for particular variables at specific
times, usually examining the rhythm and cerebral
damage. These specifications are used by BNG to
construct a Bayesian network that can then be fed
to an inference system. The system used in these
simulations was IDEAL. The queries are answered
by providing the posterior probabilities given the
evi'dence and actions.
Our first example simulates a response to a mas-

sive myocardial infarction. The following evidence
is presented as the state at time 0: rhythm is ven-
tricular tachycardia, no period of anoxia, no cere-

21n practice a physician would decide on later ac-
tions after observing the effects of previous actions.
But in order to choose the optimal next action, one
must evaluate each choice in the context of the opti-
inal sequence of future actions.

CPR (O) CPR (I) J DF1B 2 J CPR (3) J
EPI (I) EPI (2) LIDO (3)

Figure 3: Temporal Bayesian network for queryiing
heart rhythm.

Figure 4: Temporal Bayesian network for querying
cerebral damage.

bral damage, and cerebral blood flow is present.
The actions are represented as context informna-
tion. Epinephrine is administered at times 1 and
2 and lidocaine is administered at time 3. (CPR is
administered throughout the code except when the
patient is being defibrillated at time 2. Notice that
because of the negation-as-failure assumption, we
need not specify what medications and interven-
tions are not being performed at each time. We
query the cardiac rhythm at time 4. (Given this
inference l)roblemn, BNG( generates the network
shown in Figure 3. The computed posterior prob-
abilities are P(normal) = 0.44, P(v-fib) = 0.11,
P(v-tach) = 0.03, P(a-fib) = 0.01, P(SVT) 0.04,
P(bradycardia) = 0.02, P(asystole) = 0.35.

Next we evaluated an alternative course of treat-
ment for the same patient. Rather than defibril-
lating at time 2, we just administered continuous
(-PR from time 0 through time 3. BN(G gener-
ated a network with the same topology as that
in Figure 3 and computed the following posterior
probabilities: P(normal) 0.57, P(v-fib) - 0.10,
P(v-tach) = 0.04, P(a-fib) 0.04, P(SVT) 0.1 1,
P(bradycardia) = 0.01, P(asystole) = 0.13. ('on-
tinuous administration of (-'PR is determined to
have a higher probability of resulting in normal
sinus rhythm than is the combination of ('PR andl
defibrillation.
The next example models a cardiac arrest duie

to drowning. The initial rhythm is asystole, the
period of anoxia is known to be 5 minutes andl
there is no prior cerebral damage. Treatment con-
sists of atropine administration at times 0 and 1,
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aindI continuied (-'PR frorm time 0 through 2, except
wlhenI the patient is beinlg defibrillate(d at tim-r-e 1.
The network genierated in responise to a query of
cerel)ral dlamrage at time 4 is shown in Figure 4.
Thie computed posterior l)rol)al)ilities of cerebral
(latliage are P(None) = 0.88, F'(Mild) = 0.12.

Notice that the inetwork generated for the first
problem-mi is dIrastically smrialler than that geiieratedl
for the second problem. BNG( generates only that
portion of the network which is relevaint to com-
puiting the given probabilistic query. If actions
were not representedl as context constraints and
the algorithm didl not restrict itself to generating
only relevant nodes, the network in the first exam-
ple wouldc conitaini 28 niodes.

DISCUSSION
We have p)resented a theoretically well-founcled
mnethod for constructing terpl)oral Bayesiain niet-
works fromn context-constrained ruiles. The pres-
enice of a formal semantics for the representation
lainguage is necessary in or(der to prove the correct-
ness of the network generation algorithm. Such
l)roofs are imnlportant for the high-stakes decision
making problems encounted in medicine. Our
techniqulle is capable of selecting that portion of
a )robability model that is relevant to a partic-
ular inferenice problem by using context informa-
tion ancd by pruning the generatedl network. The
natuiralniess of the encoding of the cardliac arrest
(lotmtaini shows that the represenitationi is relatively
easy to use. The networks generated to solve the
examp)le problems illustrate the lpotential cornrpu-
tational savings of the techniquie. C'omputational
efficieincy becomes a major issuie as researchers at-
temrl)t to imiodel larger and rmore comnl)lex domains.

Otur general approach to rel)resenting ancd con-
structing Bayesian networks is similar to that of
Breese [13]. He provides a method for constructinig
non-ternlporal Bayesian networks fromii knowledge
bases of sc.hermatic context-coinstraiinedl rules. He
(hoes not l)rovidhe a precise semantics for the knowl-
edge base. His construction algorithmn chains both
forwards and backwards, ancl as a resuilt is some-
what more complex than ours. He does not inc.lude
a pruining phase in his algorithrm.

Nicholson &, Brady [2] discuiss a method of
dynairmically constructing termporal Bayesian net-
works. They are able to control the size ancl corn-
plexity of the models by pruinining states from
nodes, arcs between nodes, or comrplete nodes.
The resuilting network may be a precise or approxi-
rimate represeintation. They do not )rovide a formal
serimantics for their knowledlge base representation
laniguiage.
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